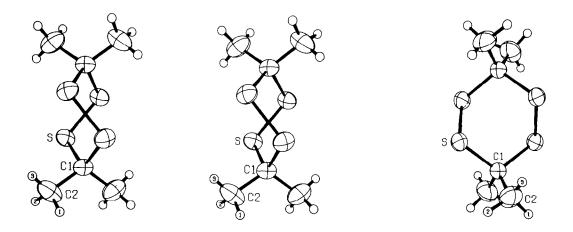
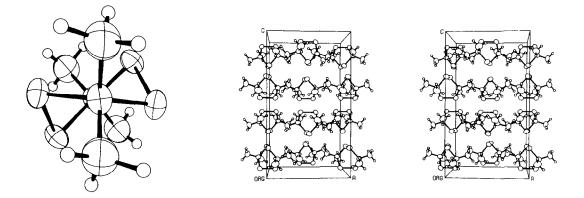
THE CRYSTAL AND MOLECULAR STRUCTURE OF 3,3,6,6-TETRAMETHYL-S-TETRATHIANE, [(CH₃)₂CS₂]₂

James D. Korp and Ivan Bernal* Department of Chemistry, University of Houston, Houston, TX 77004


Steven F. Watkins and F. R. Fronczek Department of Chemistry, Louisiana State University, Baton Rouge, LA 77803

The X-ray crystal structure of 3,3,6,6-tetramethyl-s-tetrathiane ("duplodithioacetone") confirms earlier nmr studies predicting the molecule to adopt a twist-boat conformation.


The title compound (I), also known as "duplodithioacetone," was prepared in 1887 by Willgerodt, who correctly assumed that $(CH_3)_2CS_2$ was actually a dimer.¹ This and related substances were investigated by Fredga,² who indicated an X-ray study was in progress at that time (1958) which seemed to show a "boat" conformation.³ We have, however, been unable to locate any structural report in the literature and assume the project was abandoned.

In 1969, Bushweller published a solution nmr study of this molecule which indicated that the twist-boat conformation is favored over the "chair" conformer.⁴ Curiously, the predominant form for the corresponding oxygen heterocycle (acetone diperoxide) has been shown to be a "chair" in solution⁵ and crystalline $bis(C_5H_{10})$ -s-tetrathiane is also chair.⁶ A recent report by MacNicol and Murphy⁷ shows that the question of conformation and interconversion in this system is still a lively one and prompts us to, herein, report the final results of our X-ray study of (I) in the solid state.

Crystals of (I) are tetragonal, space group $I4_1/acd$, with a = 10.565(2), c = 18.344(3) Å, and z = 8. The origin was positioned at I, in compliance with restrictions imposed by the SHELX least-squares program.⁸ A total of 409 unique reflections was collected using MoKa radiation, to a limit of $54^{\circ}(2\theta)$. The phase problem was solved by MULTAN⁹ and the molecule was found to lie along the diagonal two-fold axis (C1 at special position x, 1/4+x, 1/8) centered about a crystallographic 222 position. With 36 independent variables, the least-squares refinement converged to R = $R_w = 0.026$. Final atomic coordinates are given in Table 1, along with other pertinent structural parameters. Figures 1-3 show the molecule as viewed down each of the mutually orthogonal two-fold axes inherent to the D₂ point symmetry. Figure 1 especially shows the twist-boat geometry, which can be thought of as two tetrahedra fused at an angle of 50° to each other. The coordination around C1 is not exactly tetrahedral (see Table 1D; Fig. 3), a phenomenon seen in compounds such as dimethylsulphane and attributed to methyl-sulfur repulsions.¹⁰

Figures 1 and 2. Two views of the molecule approximately along the two-fold axes demanded by crystallographic symmetry. Figure 1 is a stereo pair. Only those atoms which are crystallographically unique are labelled.

Figures 3 and 4. A view approximately along the third two-fold axis, which coincides with the C--C vector across the ring. Note the staggering (by 50°) of the two tetrahedra centered on the methylene carbons. Figure 4 is a packing diagram, in stereo.

oxygen analogue is unknown, several derivatives have been studied (e.g., dimeric cyclohexanone peroxide¹¹) and have been found to be in the chair conformation. These too show an asymmetric environment at the spiro carbon due to H...0 contacts.

The S--S bond length of 2.015 Å is among the shorter values reported in the literature, and is significantly smaller than the value of 2.08 Å usually assumed for a single bond. This suggests some degree of multiple bonding via the sulfur d orbitals and, as noted much earlier by Hordvik,¹² there is a definite relationship between the S--S distance and the C-S-S-C angle. The bond length is greatest when the lone pairs produce maximum repulsion (torsion angle = 0°) and least when the d_{π} - p_{π} overlap is maximized (90°). We have recently studied several compounds having angles at one of the extremes (0° or 90°)¹³ and some intermediate,¹⁴ all of which serve to confirm this relationship. The present results are quite close to those found in orthorhombic sulfur (S₈; 2.037 Å, 80.7°)¹⁵ but different from those in the S₆ chair (2.06 Å, 74°).¹⁶ The S--C bond length of 1.843 Å is indicative of a pure single bond, and the average endocyclic torsion angle (51°) is only slightly less than that of cyclohexane itself (54°). Figure 4 shows the layered packing of the molecules, and the near perfect alignment of the S--S vectors with the <u>a</u> and <u>b</u> axes accounts for the difficulty found in attempting to interpret the Patterson map.

REFERENCES

- 1. C. Willgerodt, <u>Chem. Ber.</u>, 1887, <u>20</u>, 2467.
- 2. A. Fredga, Acta Chem. Scand., 1958, 12, 891.
- 3. I. Lindqvist and R. Rosenstein, unpublished results, 1958.
- 4. C. H. Bushweller, J. Am. Chem. Soc., 1969, 91, 6019.
- 5. R. W. Murray, P. R. Story, and M. L. Kaplan, J. Am. Chem. Soc., 1966, 88, 526.
- C. H. Bushweller, G. Bhat, L. Leteudre, J. A. Brunelle, H. S. Bilofski, H. Ruben, D. Templeton and A. Zalkin, J. Amer. Chem. Soc., 1975, 97, 65, and references therein.
- 7. D. D. MacNicol and A. Murphy, Tetrahedron Lett., 1981, 22, 1131.
- 8. G. M. Sheldrick, SHELX-76 System of Crystallographic Programs, 1976.
- 9. G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368.
- 10. B. Beagley and K. T McAloon, Trans. Faraday, 1971, 67, 3216.
- 11. P. Groth, Acta Chem. Scand., 1967, 21, 2608.
- 12. A. Hordvik, Acta Chem. Scand., 1966, 20, 1885.
- I. Bernal, J. L. Atwood, F. Calderazzo, and D. Vitali, <u>Israel J. Chem.</u>, 1976-77, <u>15</u>, 153. J. D. Korp and I. Bernal, ms on S₇C₁₂H₈ in preparation.
- 14. J. D. Korp and I. Bernal, ms on Epidithio-&-Proline-&-Anhydride in preparation.

15. S. C. Abrahams, Acta Cryst., 1955, 8, 661.

16. J. Donohue, A. Caron, and E. Goldish, J. Am. Chem. Soc., 1961, 83, 3748.

ACKNOWLEDGEMENT

JDK and IB thank the Robert A. Welch Foundation for operating support through grant E-594.

TABLE 1

A. Atomic Coordinates							
Atom	x/a	y/b	z/c	Atom	x/a	y/b	z/c
S	0.49052(6)	0.65511(5)	0.19979(2)	H1	0.335(3)	0.474(3)	0.067(1)
C1	0.3774(2)	0.6274(2)	0.1250	H2	0.406(3)	0.428(4)	0.142(2)
C2	0.4006(4)	0.4925(3)	0.1006(2)	НЗ	0.478(3)	0.489(3)	0.079(1)

- B.Bond Lengths (Å) and Angles (°)
S S' 2.015(1)S C1 C2 105.4(2)
S C1 1.843(2)S C1 1.843(2)S C1 C2 105.4(2)
S C1 S" 110.3(1)
S C1 C2" 111.4(1)
C2 H1 0.95(3)C2 H2 1.03(3)S' S C1 102.9(1)
S' S C1 102.9(1)
C2 H3 0.91(3)
- C. $\underline{\text{Torsional Angles(°)}}$ $C1 S S' C1' \dots -80.41$ $S' S C1 C2'' \dots -80.59$ $S' S C1 C2 \dots 156.44$ $S' S C1 S'' \dots 36.08$
- D. <u>Dihedral Angles (See Figure 3)</u> Plane S-C1-S" vs. Plane C2-C1-C2" = 85.8° Plane S-C1-S" vs. Plane S'-C1'-S"' = 49.9°
- E. Ring Puckering Parameters $q_2 = 1.276$ $p_2 = 30.0$ $\theta = 90.0$ $q_3 = 0.0$ Q = 1.276

(Received in USA 2 June 1981)